Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes

Identifieur interne : 003F85 ( Main/Repository ); précédent : 003F84; suivant : 003F86

Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes

Auteurs : RBID : Pascal:10-0369041

Descripteurs français

English descriptors

Abstract

Using a hydrodynamic model self-consistently coupled to a Poisson solver, we investigate the time and frequency response of InGaAs diodes excited at room temperature by an optical photoexcitation presenting a beating in the terahertz frequency domain. The analysis of the main physical quantities, such as the local electric field and the conduction current density, evidences the presence of strong resonances that are interpreted as three-dimensional plasma oscillations excited by the optical beating. By studying the influence of the geometry and doping of the diode, it is shown that, in most cases, the highly doped contacts mainly control the frequency of the plasma mode while the diode length is a crucial parameter to evidence a second resonance related to the diode active region. Moreover, the amplitude of the plasma resonances can be enhanced at high doping levels and by increasing the level of the optical photoexcitation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0369041

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes</title>
<author>
<name sortKey="Ziade, P" uniqKey="Ziade P">P. Ziade</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise</s1>
<s2>Fanar</s2>
<s3>LBN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Liban</country>
<wicri:noRegion>Fanar</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marinchio, H" uniqKey="Marinchio H">H. Marinchio</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
<author>
<name sortKey="Laurent, T" uniqKey="Laurent T">T. Laurent</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sabatini, G" uniqKey="Sabatini G">G. Sabatini</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kallassy, Z" uniqKey="Kallassy Z">Z. Kallassy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise</s1>
<s2>Fanar</s2>
<s3>LBN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Liban</country>
<wicri:noRegion>Fanar</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palermo, C" uniqKey="Palermo C">C. Palermo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
<author>
<name sortKey="Varani, L" uniqKey="Varani L">L. Varani</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Montpellier II</wicri:noRegion>
<placeName>
<settlement type="city">Montpellier</settlement>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
<orgName type="institution" wicri:auto="newGroup">PRES Sud de France</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0369041</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0369041 INIST</idno>
<idno type="RBID">Pascal:10-0369041</idno>
<idno type="wicri:Area/Main/Corpus">004141</idno>
<idno type="wicri:Area/Main/Repository">003F85</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping</term>
<term>Electric field effects</term>
<term>Frequency dependence</term>
<term>Gallium Indium Arsenides Mixed</term>
<term>Hydrodynamic model</term>
<term>Oscillations</term>
<term>Photoexcitation</term>
<term>Plasmons</term>
<term>Resonance frequency</term>
<term>Self consistency</term>
<term>THz range</term>
<term>Time dependence</term>
<term>n n+ junction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oscillation</term>
<term>Plasmon</term>
<term>Dépendance temps</term>
<term>Modèle hydrodynamique</term>
<term>Autocohérence</term>
<term>Photoexcitation</term>
<term>Fréquence résonance</term>
<term>Effet champ électrique</term>
<term>Dopage</term>
<term>Gallium Indium Arséniure Mixte</term>
<term>Jonction n n+</term>
<term>Dépendance fréquence</term>
<term>Domaine fréquence THz</term>
<term>InGaAs</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using a hydrodynamic model self-consistently coupled to a Poisson solver, we investigate the time and frequency response of InGaAs diodes excited at room temperature by an optical photoexcitation presenting a beating in the terahertz frequency domain. The analysis of the main physical quantities, such as the local electric field and the conduction current density, evidences the presence of strong resonances that are interpreted as three-dimensional plasma oscillations excited by the optical beating. By studying the influence of the geometry and doping of the diode, it is shown that, in most cases, the highly doped contacts mainly control the frequency of the plasma mode while the diode length is a crucial parameter to evidence a second resonance related to the diode active region. Moreover, the amplitude of the plasma resonances can be enhanced at high doping levels and by increasing the level of the optical photoexcitation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZIADE (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MARINCHIO (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAURENT (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SABATINI (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KALLASSY (Z.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PALERMO (C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VARANI (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise</s1>
<s2>Fanar</s2>
<s3>LBN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut d'Électronique du Sud (CNRS UMR 5214), Université Montpellier II</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>075012.1-075012.8</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000194707160120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0369041</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using a hydrodynamic model self-consistently coupled to a Poisson solver, we investigate the time and frequency response of InGaAs diodes excited at room temperature by an optical photoexcitation presenting a beating in the terahertz frequency domain. The analysis of the main physical quantities, such as the local electric field and the conduction current density, evidences the presence of strong resonances that are interpreted as three-dimensional plasma oscillations excited by the optical beating. By studying the influence of the geometry and doping of the diode, it is shown that, in most cases, the highly doped contacts mainly control the frequency of the plasma mode while the diode length is a crucial parameter to evidence a second resonance related to the diode active region. Moreover, the amplitude of the plasma resonances can be enhanced at high doping levels and by increasing the level of the optical photoexcitation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A45G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Oscillation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Oscillations</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Plasmon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Plasmons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépendance temps</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Time dependence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle hydrodynamique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hydrodynamic model</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Autocohérence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Self consistency</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Autocoherencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoexcitation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoexcitation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fréquence résonance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Resonance frequency</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Frecuencia resonancia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Gallium Indium Arséniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium Indium Arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Jonction n n+</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>n n+ junction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Unión n n+</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépendance fréquence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Frequency dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>THz range</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>235</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003F85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0369041
   |texte=   Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024